Electronic Joint Business

Solution for E-Business

Linux可执行文件格式分析

可执行文件格式综述 可执行文件是操作系统中最重要的文件类型。可执行文件中包含代码和数据,此外文件可能需要引用外部文件定义的符号(变量和函数),因此重定位信息和符号信息也是需要的。其他一些辅助信息是可选的,如调试信息、硬件信息等。基本上任意一种可执行文件格式都是按区间保存上述信息,称为段(Segment)或节(Section)。不同的文件格式中段和节的含义可能有细微区别。最后,可执行文件通常都有一个文件头部以描述本文件的总体结构。 获得可执行文件有三个重要的步骤:编译(compile)、连接(link,也可称为链接、联接)、加载(load)。源程序文件被编译成目标文件,多个目标文件被连接成一个最终的可执行文件,可执行文件被加载到内存中运行。 下面我们来看一下LINUX平台下ELF文件加载过程的一个简单描述。 1:内核首先读ELF文件的头部,然后根据头部的数据指示分别读入各种数据结构,找到标记为可加载(loadable)的段,并调用函数 mmap()把段内容加载到内存中。在加载之前,内核把段的标记直接传递给 mmap(),段的标记指示该段在内存中是否可读、可写,可执行。显然,文本段是只读可执行,而数据段是可读可写。这种方式是利用了现代操作系统和处理器对内存的保护功能。 2:内核分析出ELF文件标记为 PT_INTERP 的段中所对应的动态连接器名称,并加载动态连接器。LINUX 系统的动态连接器通常是 /lib/ld-linux.so.2。 3:内核在新进程的堆栈中设置一些标记-值对,以指示动态连接器的相关操作。 4:内核把控制传递给动态连接器。 5:动态连接器检查程序对外部文件(共享库)的依赖性,并在需要时对其进行加载。 6:动态连接器对程序的外部引用进行重定位,通俗的讲,就是告诉程序其引用的外部变量/函数的地址,此地址位于共享库被加载在内存的区间内。动态连接还有一个延迟(Lazy)定位的特性,即只在”真正”需要引用符号时才重定位,这对提高程序运行效率有极大帮助。 7:动态连接器执行在ELF文件中标记为 .init 的节的代码,进行程序运行的初始化。在早期系统中,初始化代码对应函数 _init(void)(函数名强制固定),在新系统中,则对应形式为 void __attribute((constructor)) init_function(void) { …… } 其中函数名为任意。 8:动态连接器把控制传递给程序,从 ELF 文件头部中定义的程序进入点开始执行。在 a.out 格式和ELF格式中,程序进入点的值是显式存在的,在 COFF 格式中则是由规范隐含定义。 从上面的描述可以看出,加载文件最重要的是完成两件事情:加载程序段和数据段到内存;进行外部定义符号的重定位。重定位是程序连接中一个重要概念。我们知道,一个可执行程序通常是由一个含有 main() 的主程序文件、若干目标文件、若干共享库(Shared Libraries)组成。(注:采用一些特别的技巧,也可编写没有 main 函数的程序,请参阅 参考资料 2)一个 C 程序可能引用共享库定义的变量或函数,换句话说就是程序运行时必须知道这些变量/函数的地址。在静态连接中,程序所有需要使用的外部定义都完全包含在可执行程序中,而动态连接则只在可执行文件中设置相关外部定义的一些引用信息,真正的重定位是在程序运行之时。静态连接方式有两个大问题:如果库中变量或函数有任何变化都必须重新编译连接程序;如果多个程序引用同样的变量/函数,则此变量/函数会在文件/内存中出现多次,浪费硬盘/内存空间。比较两种连接方式生成的可执行文件的大小,可以看出有明显的区别。 a.out 文件格式分析 a.out 格式在不同的机器平台和不同的 UNIX 操作系统上有轻微的不同,例如在 MC680x0 平台上有 6 个 section。下面我们讨论的是最”标准”的格式。 […]

,

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.